

(AP)

TRANSVERSE VIBRATIONS OF A RECTANGULAR MEMBRANE WITH DISCONTINUOUSLY VARYING DENSITY

M. E. Pronsato,[†] P. A. A. Laura[‡] and A. Juan[†]

[†]Physics Department, Universidad Nacional del Sur and [‡]Engineering Department and Institute of Applied Mechanics (CONICET), Universidad Nacional del Sur, 8000 Bahía Blanca, Argentina

(Received 28 October 1998)

1. INTRODUCTION

The dynamic behavior of structural systems with continuously or discontinuously varying material properties is of considerable interest in several areas of applied science and technology [1-3]. The present note deals with the study of a vibrating rectangular membrane with a discontinuously varying density distribution (Figure 1).

The problem is solved by expanding the displacement amplitude in terms of a double Fourier Series which constitutes the exact solution in the case of an homogeneous membrane. The Rayleigh–Ritz method is then used to generate the determinantal equation.

2. APPROXIMATE ANALYTICAL SOLUTION

In the case of normal modes the problem is governed by the differential system

$$\nabla^2 W + \omega^2 \frac{\rho}{T} W = 0, \quad W(\partial D_2) = 0, \tag{1a, b}$$

with

$$\rho(\bar{x}, \bar{y}) = \begin{cases} \rho_1 \ \forall \ (\bar{x}, \bar{y}) \in D_1, \\ \rho_2 \ \forall \ (\bar{x}, \bar{y}) \in D_2 - D_1 \end{cases}$$
(2)

From the point of view of finding an approximate solution it is convenient to formulate the problem in terms of the functional

$$J[W = \iint_{D_2} (W_{\bar{x}}^2 + W_{\bar{y}}^2) \, \mathrm{d}\bar{x} \, \mathrm{d}\bar{y} - \frac{\omega^2}{T} \rho_2 \bigg(\gamma \iint_{D_1} W^2 \, \mathrm{d}\bar{x} \, \mathrm{d}\bar{y} + \iint_{D_2 - D_1} W^2 \, \mathrm{d}\bar{x} \, \mathrm{d}\bar{y} \bigg),$$
(2)

where

$$\gamma = \rho_1 / \rho_2, \quad D_1 \subset D_2.$$

0022 - 460 X / 99 / 170341 + 4 \$30.00/0

© 1999 Academic Press

Figure 1. Non-homogeneous rectangular membrane considered in the present study $(u = \bar{u}/a = \nu = \bar{\nu}/b)$.

Introducing the dimensionless variables $x = \bar{x}/a, y = \bar{y}/b$, expression (3) becomes

$$\lambda J[W] = \iint_{C_2} (W_x^2 + \lambda^2 W_y^2) \, \mathrm{d}x \, \mathrm{d}y - \frac{\omega^2 \rho_2 a^2}{T} \\ \left(\gamma \iint_{C_1} W^2 \, \mathrm{d}x \, \mathrm{d}y + \iint_{C_2 - C_1} W^2 \, \mathrm{d}x \, \mathrm{d}y\right), \tag{4}$$

where $\lambda = a/b$.

The displacement amplitude will now be approximated by a truncated Fourier series of the form

$$W \cong W_a = \sum_{n=1}^{N} \sum_{m=1}^{M} b_{nm} \sin \frac{n\pi x}{a} \sin \frac{m\pi y}{b}.$$
 (5)

Substituting equation (5) in equation (4) and requiring

~ -

$$\frac{\partial J}{\partial b_{nm}}[W_a] = 0, \tag{6}$$

one obtains a linear system of equations in the b_{nm} 's. The non-trivial solution of the system leads, finally, to the determinantal equation in the eigenvalues of the problem.

γ	и	$\lambda = 1$			$\lambda = 1.5$			$\lambda = 2$		
		W_1	W_2	W_8	\widetilde{W}_1	W_2	W_8	\widetilde{W}_1	W_2	W_8
$ \begin{array}{r} 0 \cdot 1 \\ 3 \\ 10 \end{array} $	0.2	4·776 3·897 2·899	4·765 3·877 2·819	4·75667 3·85974 2·74548	6·089 4·967 3·695	6·078 4·95 3·619	6·06862 4·92989 3·53542	7·552 6·161 4·583	7·541 6·142 4·501	7·52943 6·11907 4·40164
$ \begin{array}{r} 0 \cdot 1 \\ 3 \\ 10 \end{array} $	0.3	5·235 3·488 2·279	5·182 3·456 2·211	5·16617 3·44392 2·18316	6·673 4·447 2·906	6·624 4·417 2·839	6·60432 4·40214 2·80628	8·277 5·516 3·604	8·224 5·483 3·532	8·19986 5·46554 3·49159
$ \begin{array}{r} 0 \cdot 1 \\ 3 \\ 10 \end{array} $	0.4	5·96 3·151 1·904	5·809 3·123 1·862	5.78831 3.11758 1.85357	7·598 4·017 2·427	7·458 3·99 2·387	7·43036 3·98372 2·37616	9·424 4·982 3·01	9·274 4·953 2·966	9·23879 4·9455 2·95344

TABLE 1 Values of the fundamental frequency coefficient $\Omega_1 = \sqrt{\rho_2/T} \omega_1 a$ as a function of λ , γ and u = v (Figure 1)

3. NUMERICAL RESULTS

The present investigation deals with the determination of the lower natural frequencies of symmetric normal modes of the system depicted in Figure 1. For this configuration $\bar{u} = \bar{u}/a = v = \bar{v}/b$ the inner, concentric portion possesses the same aspect ratio as the outer boundary of the membrane.

The frequency coefficients were determined using the terms: n = 1, m = 1, 3, 5, 7; n = 3, m = 3, 5, 7; n = 5, m = 5.

Table 1 depicts values of the fundamental frequency coefficient $\Omega_1 = \sqrt{\rho_2/T} \omega_1 a$ for several combinations of values of λ , γ and u = v when one, two and eight terms of the approximating function are employed. Table 2 shows the second frequency coefficient corresponding to a symmetric mode when one and eight terms of the truncated double Fourier series are used. From the analysis of

Values of the frequency coefficient $\Omega_2 = \sqrt{\rho_2/T} \omega_2$ a in the case of symmetric modes (Figure 1)

γ	и	$\lambda = 1$		$\lambda = 1.5$		$\lambda = 2$	
		$\overline{W_2}$	$\overline{W_8}$	$\overline{W_2}$	$\overline{W_8}$	$\overline{W_2}$	$\overline{W_8}$
$ \begin{array}{c} 0 \cdot 1 \\ 3 \\ 10 \end{array} $	0.2	10·62 9·19 8·464	10·4668 9·03024 8·05261	15·471 13·379 12·252	15·1337 13·0143 11·3749	20·411 17·645 16·126	19·7972 17·0086 14·7275
$ \begin{array}{c} 0.1 \\ 3 \\ 10 \end{array} $	0.3	11·403 8·993 8·198	10·9616 8·80481 7·15777	16·576 13·078 11·861	15·5947 12·6817 10·1834	21·851 17·242 15·608	20·1661 16·5803 13·2428
$ \begin{array}{c} 0.1 \\ 3 \\ 10 \end{array} $	0.4	12·422 8·729 7·216	11·579 8·37533 5·54573	17·979 12·696 10·462	16·1315 12·0911 7·9857	23·664 16·739 13·777	20·6305 15·8351 10·4495

γ	u = v	Ω_1				
		Present study	Reference [1]			
0.1		5.166	5.17			
3	0.3	3.444	3.54			
10		2.183	2.34			

TABLE 3Comparison of values of Ω_1 in the case of a square non-homogeneous membrane

Tables 1 and 2 one concludes that the rate of convergence appears to be satisfactory.

Finally, Table 3 depicts a comparison of fundamental frequency coefficients in the case of a square, non-homogeneous membrane between the results obtained in the present investigation and those determined in reference [1], where a single polynomial expression was used to represent, the fundamental mode shape. The agreement is excellent in the case of moderate values of γ leading to the conclusion that a simple, polynomial co-ordinate function yields very good accuracy in the case of a rather complex elastodynamics problem.

ACKNOWLEDGMENTS

The present study has been sponsored by Secretaría General de Ciencia y Tecnología of Universidad Nacional del Sur and by CONICET Research and Development Program. Miss M. E. Pronsato has been supported by a CONICET Fellowship. The authors express their gratitude to Professor D. V. Bambill for her valuable cooperation in the preparation of the computer program.

REFERENCES

- 1. P. A. A. LAURA and R. H. GUTIERREZ 1984 *Applied Acoustics* 17, 405–411. A simple approximate method for the solution of the Helmholtz equation in the case of rectangular, non-homogeneous domains.
- 2. J. P. SPENCE and C. O. HORGAN 1983 *Journal of Sound and Vibration* **87**, 71–81. Bounds on natural frequencies of composite circular membranes: integral equation methods.
- 3. R. H. GUTIERREZ, P. A. A. LAURA, D. V. BAMBILL, V. A. JEDERLINIC and D. HODGES 1998 *Journal of Sound and Vibration* **212**, 611–622. Axisymmetric vibrations of solid circular and annular membranes with continuously varying density.